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Summary. A new way of representing the one-particle reduced density matrix 
(ODM) of closed-shell atoms in a spherically averaged manner is presented, and 
connections of this representation to the radial density distribution D(R) and the 
isotropic reciprocal form factor B(s) are shown. In this representation, certain 
characteristics of the angular nodal structure of the natural orbitals (NOs) are 
preserved. Examples of hydrogenic orbitals and near-Hartree-Fock wave func- 
tions for some closed-shell atoms are given. 
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1 Introduction 

Among the great revelations in L6wdin's 1955 series of papers [1] were the 
properties of the one-particle reduced density matrix (ODM) [2] and the 
introduction of its eigenfunctions, the natural spin-orbitals. The spin-traced 
ODM (in the following simply denoted as ODM) includes, as is well known, all 
information about the spin-independent one-particle properties of the system. Its 
connection to various experimentally obtainable quantities are well documented 
in the literature [3]. 

However, graphical representations of the ODM have only been given sparsely 
[4-7], which can be explained by the fact, that ~(?, f') is a function of six variables 
(three for each of the coordinates ~ and ~'), and that therefore some process of 
reducing the number of independent variables has to be applied. For atomic 
systems, the natural means by which to do this is a spherical-averaging procedure. 

Recently, Gadre et al. [6] have published contour-plots of spherically aver- 
aged O(F, f') for some closed-shell atoms of the first three rows of the periodic 
table. They obtain these by equating the polar and azimuthal angles (O, qS) and 
(O', q~') and integrating over the resulting 'angular cut' through Q: 

'ff Q(r, r') = ~ Q(F, ~')Io" = o,4)" = e sin 0 dO d4~. (1) 

This procedure does not account for the off-diagonal of the angular part of ~ 
(i.e. O' ¢ 0 and qS' ~ q~, respectively), and therefore does not preserve informa- 
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tion about the angular nodal structure of the natural orbitals q~(f) (NOs; these 
are the eigenfunctions of the spin-traced ODM; its eigenvalues are the associated 
occupation numbers ne [1].) 

0(f, ~') = ~ni  q~, (?)q~* (F'). (2) 
i 

The procedure we propose in the present paper replaces the combination of a 
'cut' (O', ~b')= (O, ~b) and a two-dimensional spherical integration by a four- 
dimensional integration over angles. As will be shown, these integrations pre- 
serve information about the angular nodes of the NOs as well as certain 
connections of the ODM to one-particle properties. 

2 The O D M  and certain one-particle properties 

As is well known [1], the diagonal of the ODM (~' = ?) is the charge density of 
the electronic system under consideration: 

~(~) = ~(~, 0. (3) 

The off-diagonal parts of Q(L f') bear no direct relationship to 0(0, but are 
connected indirectly with the corresponding momentum density II(fi). This 
connection is established via the so-called reciprocal form factor (or internally 
folded density) [8-11] B(g). B(g) is given as an internal convolution of the ODM 
or an autocorrelation function of its natural orbitals [8, 10]: 

B(g) = f e(f,f + g)de= ~ n, f 4~i(O4~*(e + (4) 

The natural orbitals are denoted by ~b i, and the n e stand for the eigenvalues of the 
ODM, the occupation numbers. 

B(g) is also, by the convolution theorem of Fourier transforms, the three- 
dimensional Fourier transform of the momentum densi ty/ / (f i )  [8]: 

B(~) = ['e-~'~1I(~6) dfi. (5) 

This connection of the off-diagonal of the ODM with the momentum density 
makes the whole 0(f, F) an interesting subject of investigation. 

It is not trivial to preserve this relationship with momentum-space properties 
in the course of a reduction of the number of independent variables in Q. For an 
atomic system, for. example, one cannot calculate the isotropic reciprocal form 
factor 

B(s) = U~ B(~) d~,, 

dr2 s = sin Os dos d(gs. (6) 

by a direct integration of the form (4) over the spherically averaged ODM of the 
form of Eq. (1): 

B(s) ¢ t'o(r, r + s)r 2 dr, (7) 
t d  

since in the construction of Q(r, r') the implicit assumption that ?' be parallel to 
f has been made. 
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To obtain a representation of  the ODM, where a simpler integration of the 
form of Eq. (4) yields B(s), we will change the coordinate system. 

3 The O D M  in extraeular and intracular coordinates 

The ODM e(?, ?') may easily be transformed into another set of coordinates 
given by: 

- (~ + ~') 
2 ' (8) 

= F -  ?, (9) 

which are called extracular and intracular coordinates, respectively [ 12-15]. The 
nomenclature of the different vectors and angles involved is given in Fig. 1. In 
our case, we can write: 

~(/~, g) = 0(?, F). (10) 

This corresponds to a transformation of the positions f and ~' into 'center-of- 
mass' coordinates. The Jacobian of the transformation is unity. 

The resulting representation ~ of  the ODM should not be confused with the 
so-called intracule and extracule matrices which are the result of the same 
coordinate transformation on the second-order reduced density matrix F2 (see 
e.g. [13]). In the latter case the transformation is applied to the pair of 
coordinates rl and F2 (/~/1 and ?~, respectively), which correspond to two different 
particles, not the same particle as in the former. 

The connections to the charge density Q(K) and the internally folded density 
B(g) take the form: 

~(/~) = ff(/~, 0) (11) 

Rs 

in this coordinate system. 

B(g) = f ~(R, g) dR (12) 

and 

Fig. 1. Extracular and intracular coordinates used in this work. 
Since the polar axis may be chosen to coincide with/~, Orr' is the 
difference in the polar angles of F and 7 
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A spherical-averaging procedure can now be readily applied to this represen- 
tation of the ODM by integrating over the angular part of the extracular 
coordinate/~. 

~(R, ~) = ~  ~(L ~) a ~ .  (13) 

This is, in the case of a spherically symmetric closed-shell atom, trivial, since the 
ODM does not depend on the absolute orientation of the pair of vectors F and 
f ' .  Note, that we do not restrict ourselves by requiring that OR = 6)s. We only 
average over all directions of the 'center-of-mass' of F and F. 

The second spherical average is now performed over the angle between the 
and the ~ vectors, i.e. over the possible orientations of the line of interconnection 
between F and F'. 

i(R, s) = ~ R, ~) ae.~. (14) 

The ~b m integration is again trivial for closed-shell atoms, since the value of the 
ODM does (bemuse of the spherical symmetry) not depend on the azimuthal 
angle between R and ~. The Om integration, however, has to be performed 
explicitly. 

As can be seen in Fig. 1, the lengths of ? and F, as well as the angle O~, 
between them, are functions of R, g and OR, : 

r J (;)' R 2 + - Rs cos ORs, 

r '  = R 2 + + R s  c o s  ORs, 

r, 
Cos(O~r,) - + (15) 

2, 'r '  I& +?YY 
~ \  \ ~ ]  ] - 

The ODM Q(~, F') will depend on the angle Orr', if it has eigenfunctions with 
angular quantum numbers I > O. For a complete subshell of orbitals with angular 
quantum number I, the dependency of 0 on Or~, takes the form of a Legendre 
Polynomial of order I: 

t 21+ 1 
~, Y~fl*(O', ~')Y~f(6), q~) = 4~ Pt(cos Orr, ). (16) 

m = - - I  

For the examples in the next section, the ORs integration was performed 
numerically, employing an algorithm described by Patterson [16]. 

We could now proceed to examine the function if(R, s), since it has the 
interesting properties: 

o(R) = if(R, 0) (17) 

and 

B(s) = 4~ f ~(R, s)R 2 dR, (18) 
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where ~(R) is the spherically averaged charge density and B(s) is the isotropic 
reciprocal form factor. We choose to weight the resulting spherically averaged 
ODM ff by a factor of 47rR 2, in order to arrive at the representation: 

  ;fff ~(R,s) =47rR2¢(R,s) =-~ O(R,~)df2Rdf2 m, (19) 

in which case Eqs. (17) and (18) become: 

D(R) = ee(R, 0) (20) 

and 

B(s) = f e~(R, s) dR. (21) 

Here D(R) denotes the well-known radial density distribution: 

D(R)=47rR2~(R)= R2 f f Q(R)df2R. (22) 

Equations (20) and (21) are somewhat simpler than their equivalents of Eqs. (17) 
and (18). Equation (21) shows, that the connection between the momentum 
space quantity B(5) and the off-diagonal of the ODM has been conserved in the 
spherical-averaging procedure. Note also, that Qa still includes information 
about the angular nodal structure of the constituting natural orbitals via Eqs. 
(15) and (16), whereas the spherically averaged ODM Q(r, r') (see Eq. (1)) does 
not. 

4 Some examples: Hydrogenic orbitals and closed-shell atoms 

In order to demonstrate the general features of 0 n, Figs. 2-7  show contour plots 
of this function for some hydrogenic orbitals (Z = 1). Note that :for l > 0, the 
plots represent full subshells of 21 + 1 orbitals with magnetic quantum numbers 
- l  ~< m ~< I. To facilitate comparison, all functions have been normalized to 
[. D(R) dR = S~O(R, 0) dR = 1. 

As one can easily see, the radial nodes of the 2s and 3s orbitals show up 
along the R-axis as zeros in D(R) and in the 'off-diagonal' region (s > 0) as 
closed nodal loops. Note, that the off-diagonal exhibits at least n negative areas 
for an ns-orbital, since each zero in D(R) splits up into one of the afore-men- 
tioned loops. It is interesting that, by integration, negative areas lead to a local 
lowering of B(s), which may result in wiggles, shoulders or (in the case of atoms 
with p-occupation) even negative values [10] of this function, corresponding to 
the overlap of regions of opposite sign in the orbital (see Eq. (4)). 

All s-orbitals exhibit slight wiggles along the line R = s/2, which may be 
explained by the fact, that for these (R, s) values, the maximum at the nucleus 
enters the calculation of the spherical average (at Icos(ORs)l = 1). 

The orbital-subshells with higher angular quantum numbers (l > 0) show 
nodal lines, which extend from the origin to the off-diagonal. Their total number 
equals I. 

For orbitals with odd l one of these lines may always be assigned to R = s/2 
or cos Orr" = 0, and therefore the (odd-order) Legendre polynomial in Eq. (16) 
vanishes identically over the range of the ORs integration. For the other nodal lines, 
no such simple relationship exists, since the value of the Legendre polynomial 
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Fig. 2. Q~ for the is hydrogenic orbital  Contour lines are shown for 0.01, 0.05, 0.I, 0.2, 0.3, 0.4 and 
0.5e-/a o. The orbital is normalized to l e -  
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Fig. 3. Qo for the 2s hydrogenic orbital. Non-negative contours are full, negative ones are dashed. 
Contour lines are shown for -0.025, -0.02, -0.015, -0.01, -0.005, 0.0, 0.005, 0.01, 0.015, 0.02, 
0.025, 0.03, 0.04, 0.05, 0.075, 0.1 and O.15e-/a o. The orbital is normalized to l e -  
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Fig. 4. Qa for the 3s hydrogenic orbital. Non-negative contours are full,  negative ones are dashed. 
Contour lines are shown for -0.02,  -0.015, -0.01, -0.005, 0.0, 0.005, 0.01, 0.015, 0.02, 0.03, 0.04, 
0.05, 0.075 and 0 .1e- /a  o. The orbital is normalized to l e -  
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Fig. 5. O a for a set of 2p hydrogenic orbitals. Non-negative contours are full, negative ones are 
dashed. Contour lines shown are for -0.025, -0.02, -0.015, -0.01,  -0.005, 0.0, 0.005, 0.01, 0.015, 
0.02, 0.025, 0.03, 0.04, 0.05, 0.075 0.1 and O.15e-/a o. The set is normalized to le 
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Fig. 6. Qo for a set of  3d hydrogenic orbitals. Non-negative contours are ful l ,  negative ones are 
dashed. Contour lines shown are for -0 .02 ,  -0.015,  -0 .01 ,  -0.005,  0.0, 0.005, 0.01, 0.015, 0.02, 
0.03, 0.04, 0.05, 0.075 and O . l e - l a  o. The set is normalized to l e -  
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Fig. 7. 0 a for a set of 4 f  hydrogenic orbitals. Non-negative contours are ful l ,  negative ones are 
dashed. Contour lines shown are for -0.015,  -0 .01 ,  -0.005,  0.0, 0.005, 0.01, 0.015, 0.02, 0.03, 0.04, 
0.05 and 0 .06e- /a  o. The set is normalized to l e -  
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remains dependent on the integration variable cos(Ons). As a result, an integral 
equation has to be solved to determine the roots of 0e. 

To estimate the position of these nodal lines, we consider first a case where 
the exponential in the (r, r') radial part of the integrand is independent of the 
angle ORs. This would be the situation for (spherical harmonic) Gaussian type 
orbitals (GTOs) [17]. Then the expression inside the ORs integral reduces to a 
polynomial in R 2 and (s/2) 2 and the roots of the resulting analytic function may 
be found explicitly. 
For a set of 2p-GTOs this yields (as mentioned previously): 

R = s/2. 
For a set of 3d-GTOs one obtains: 

s 1 s 
R = ~ x / / 3  and R =  

2fi' 
and for the 4f-case the result is: 

(23) 

(24) 

R=(s/2),  R = 2  3 x / ~ x / ~  and R = 2 ~ x / ~ .  (25) 

For the physically more relevant Slater-type functions, such as the ones used 
throughout this work, the actual position of the nodal lines are quite similar to 
the ones above. How strongly they deviate depends on how strongly the 
exponential e-z(r +/) is ORs dependent, i.e. on its anisotropy in intracular/extrac- 
ular coordinates. The STO nodal curves do not even have to be (and for all cases 
other than the previously mentioned R -= s/2 are not) straight lines. 

The total 0 e of an atomic system will, of course, be a superposition of the 
contributions from each of its natural orbitals, weighted by the corresponding 
occupation numbers hi. We have computed and plotted 0 ~ for some closed-shell 
atoms of the first and third rows of the periodic table, using the near-HF wave 
functions of Clementi and Roetti [18], which are given in an optimized STO 
basis set. The contour plots for Be, Ne, Ca, and Zn are shown in Figs. 8-11. An 
extension to open-shell systems would require the assumption of a statistical 
mixture of possible degenerate configurations to give a spherically symmetric 
total or the treatment of the totally symmetric component of the ODM [19]. 

For the beryllium atom (Fig. 8), the most prominent feature of 0 ~ is the 
distinction between the K and L shells. The influence of the minimum in the 
radial density D(R) which may be used to define this shell boundary [20, 21], 
extends well into the off-diagonal region of 0 Q and leads to a valley separating 
the main areas of domination by the ls and 2s contribution. No negative areas 
are visible so that negative values for the reciprocal form factor B(s) cannot be 
expected. B(s) of beryllium is indeed positive definite. 

The neon atom (Fig. 9) shows a different topology in 0 ~. There is still a 
minimum in D(R), separating the core from the valence region. The valley 
extending from this minimum is strongly modified by the influence of the nodal 
line, which is the consequence of the p-occupation in neon. For small values of 
R and s it is bent, but approaches for higher values the line R = s/2, as may be 
expected from the considerations for 2p orbitals above. 

These two basic patterns are repeated in the following atoms with an 
increasing complexity. As an example might serve calcium (Fig. 10), where the 
negative area in 0 ~ is mainly due to p-contributions. The zero line deviates very 
strongly from linearity. This is due to the overwhelming influence of the diffuse 
4s orbital which extends over quite a large region of R and s. 
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Fig. 8. Qa for the beryllium atom in the N H F  approximation. Contour lines shown are for 0.01, 0.05, 
0.1, 0.2, 0.3, 0.4, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0 and 3.5e-/a o. 
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Fig. 9. co ~ for the neon atom in the N H F  approximation. Non-negative contours are full,  negative 
ones are dashed. Contour lines shown are for - 0 . 3 ,  - 0 . 2 ,  - 0 . 1 ,  -0 .05 ,  -0 .01 ,  0.0, 0.01, 0.05, 0.1, 
0.2, 0.3, 0.4, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0, 6.0 and 7 . 0 e - / a  o 
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Fig. 10. ~o ~ for the calcium atom in the N H F  approximation. Non-negative contours are full, 
negative ones are dashed. Contour lines shown are for -0 .6 ,  -0 .5 ,  -0 .4 ,  -0 .3 ,  -0 .2 ,  -0 .1 ,  -0.05,  
-0.01,  0.0, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.75, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0, 7.5, 10.0, 15.0 and 
20.0e /a o 

Zinc (Fig. 11) serves as a last example, to demonstrate the influence of a 
closed d-shell on the topography of the spherically averaged ODM. Since 
d-orbitals show two nodal lines we expect two positive areas in ~ ,  separated by 
a negative one (as in Fig. 6). This feature is actually found, but it is strongly 
modified by the influence of the 4s-orbital which joins the two regions for larger 
(R, s). The result is a 'pond' in the ODM. The impact of p-contributions to the 
total is fairly difficult to estimate since their nodal line crosses this pond and only 
modifies its shape. For this atom, we have included graphs of D(R) and B(s) in 
Fig. 11 in order to indicate the respective functions obtained from a cut at s = 0 
(Eq. (20)) and an integration over R (Eq. (21)). 

5 Conclusions and outlook 

We have demonstrated for the examples of several hydrogenic orbitals and 
closed-shell atoms, that the ODM of a spherically symmetric system may be 
represented by a function of only two radial variables R and s in such a way, that 
important angular features are retained. This representation, which is based on 
the transformation into intra- and extracular coordinates, shows a simple and 
direct connection (Eq. (20)) with the radial density D(R). It also preserves the 
integral relation (Eq. (4)) with the Fourier transform of the momentum density, 
B(s), that holds generally for the anisotropic ODM of electronic systems. 

Information about contributions of orbitals with different angular behaviour 
may be extracted from the corresponding contour plots by inspection. In the case 
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Fig. 11. Q~2 for the zinc atom in the N H F  approximation. Non-negative contours are full, negative 
ones are dashed. Contour lines shown are for -1 .5 ,  -1 .0 ,  -0 .75 ,  - 0 . 5 ,  - 0 .4 ,  -0 .3 ,  -0 .2 ,  -0 .1 ,  
-0 .05 ,  -0 .01 ,  0.0, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.75, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0, 7.5, 10.0, 15.0, 
20.0 and 30 .0e- /a  o. At the bottom, the radial charge distribution D(R) is shown to indicate the cut 
through Q~2 at s = 0. The curve at the left shows B(s), i.e. the integral ~ o~(R, s) dR 

of single orbital contributions, it is possible to infer the orbital type by counting 
the radial and angular nodes in the ODM. This feature is not found in the 
conventional representation (Eq. (1)). 

The restriction to closed-shell systems need not be retained if one is only 
interested in the statistical mixture of degenerate ground-states of atoms or in the 
totally symmetric component of the ODM. 

An extension to the momentum space representation of the ODM, namely 
~(p, p') is straightforward, since the angular part of the natural orbitals is 
retained in the course of a Fourier transformation [22]. Only the radial part of 
the matrix changes from an exponential-type to a Lorentzian-type behaviour. 
For non-zero l quantum numbers, additional modifications of the radial part 
occur [22]. The connections (Eqs. (20) and (21)) have clearly their counterparts 
in momentum space, namely: 

I(P) = ¢~t(P, 0) (26) 

and 

F(k) = [ ~ ( P ,  k) dP, (27) 

where P and k are the equivalents of R and s. Here, the radial momentum 
density I(P) = 4xP2//(P) and the coherent form factor F(k) take the place of 
D(R) and B(s), respectively, e~t denotes the ODM in an analogous representa- 
tion in momentum space. Given the importance of the momentum density and 
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reciprocal space quantities such as F(k), an investigation of this representation of 
the ODM is well worthwhile and is presently being carried out in this laboratory. 
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